May 30th, 2006

centaur

Группы порядка 1 и 2

унада: <a>={a}
диада: <a,b>={a<b>}={a{b}}
триада: <a,b,c>=<<a,b>,c>={{a{b}}{c}}

<a,a>={a{a}}
<<a>,a>={{a}}
<<a,a>,a>={ {a{a}} {a} }
<<<a>,a>,a>={ {{a}} {a} }
<<<a>,a>,<a>>={{{a}}}

0={},  1={0}={{}}

S1={0}=<0>={{}}
C1={<<0,0>,0>}={ {{0{0}}{0}} }
G1=<S1,C1>={S1{C1}}={ {0} { {{0{0}}{0}} } }}={ {{}} { {{{}{{}}}{{}}} } }

S2={0,1}={0{0}}=<0,0>={{}{{}}}
C2={<<0,0>,0>, <<0,1>,1>, <<1,0>,1>, <<1,1>,0>} =
= { {{0{0}}{0}} {{0{1}}{1}} {{1{0}}{1}} {{1{1}}{0}} }
= { {{0{0}}{0}} {{0{{0}}}{{0}}} {{{0}}} {{{0}{{0}}}{0}} }
G2=<S2,C2>={S2{C2}}={ {0{0}} { { {{0{0}}{0}} {{0{{0}}}{{0}}} {{{0}}} {{{0}{{0}}}{0}} } } } =
={ {{}{{}}} { { {{{}{{}}}{{}}} {{{}{{{}}}}{{{}}}} {{{{}}}} {{{{}}{{{}}}}{{}}} } } }
centaur

Метаграмматика феноменов

A0= { } =  0

A1= {0} = 1 – чистая экспрессия

    <0,0> = {0 {0} } = {0 1 }

A2= {0 {0} } = {0 1} = <0,0>  чистая рефлексия

    <1,0> = {1 {0} } = {1} = 2

    <0,1> = {0 {1} } = {0 2} = {0<1,0>}

    <1,1> = {1 {1} } = {1 2} = {1<1,0>}

A3= {0 {0} {{0}} {0{0}} } = {0 1 {1} A2 } = {0 1 2 A2 } = {0 1 <0,0> <1,0>}

   = <0,0> + {<0,0>} + {<1,0>}  экспрессивная рефлексия

    <2,0> = {2 {0} } = {1 2} = <1,1>

    <2,1> = {2 {1} } = {2} = {<1,0>} = 3

    <0,2> = {0 {2} } = {0 3} = {0<2,1>}

    <1,2> = {1 {2} } = {1 3} = {1<2,1>} = {1<<1,0>,1>}

    <0,0,0> = {0<0,0>} = {0A2}

A4= {0 {0} {{0}} {0{0}} {{{0}}} {0{{0}}} {{0}{{0}}} {0{0}{{0}}} {{0{0}}} {0{0{0}}} {{0}{0{0}}}       

        {0{0}{0{0}}} {{{0}}{0{0}}} {0{{0}}{0{0}}} {{0}{{0}}{0{0}}} {0{0}{{0}}{0{0}}} }

   = {0 1 {1} A2 {{1}} {0{1}} {1{1}} {01{1}}

        {A2} {0A2} {1A2} {01A2} {{1}A2} {0{1}A2} {1{1}A2} A3 }

   = {0 1 2 A2 3 {02} {12} {012} {A2} {0A2} {1A2} {01A2} {2A2} {02A2} {12A2} A3 }

   = {0 1 <0,0> <0,1> <1,0> <1,1> <0,0,0> <<1,0>,1> {01<1,0>} {<0,0>} {1<0,0>}        

        {01<0,0>} {<1,0><0,0>} {0<1,0><0,0>} {1<1,0><0,0>} A3 }

A22= {<0,0> <0,1> <1,0> <1,1>}

A5= {0 1 <0,0> <0,1> <1,0> <1,1> … {0 1} {<0,0> <0,1> <1,0> <1,1>} …

         … <0,0,0> <0,0,1> <0,1,0> … <1,1,1> …}

   = A2 + A22 + A23 + {… A2 A22 …} +…

 

An= {… ap  aq  …}

Содержит всевозможные феномены уровня экспрессии n.

 

An+1=  An + { … <ap>  … <aq>  Bn,k …}

Содержит всевозможные надфеномены An, в т.ч. унады <ap>={ap}.

Полностью воспроизводит An.

 

An+2=  An+1 + { … <ap,aq>  Sn,kRn,k}

Содержит всевозможные семейства Sn,k надфеноменов An, в т.ч. все топологии на An, а также. диады <ap,aq>={ap<aq>} и все унарные отношения Rn,k на An. Топология определяет близость-дальность феноменов через открытые надфеномены-окрестности.

 

An+3= An+2 + { … <ap,aq,ar> R2n,k …}

Содержит всевозможные семейства надфеноменов An+1, в т.ч. все бинарные отношения R2n,k на An, включая все одноместные функции, а также триады <ap,aq,ar>={ap<aq,ar>}. Ясно, что также содержит все топологии на An+1.

 

An+4= An+3 + { … <ap,aq,ar,as> R3n,k …}

Содержит всевозможные семейства надфеноменов An+2, в т.ч. все тернарные отношения R3n,k на An, включая все бинарные операции. Ясно, что также содержит все топологии на An+2.

 

An+5= An+4 + { … <ap,aq,ar,as,at> R4n,k …}

Содержит всевозможные семейства надфеноменов An+3, в т.ч. все диады-группоиды <Bn,u,R3n,v> на An, включая все полугруппы, моноиды и группы.